Higher MRP

What is this example testing?

Regulators wanted to see the impact of increasing the MRP

Impact on Parameters

Baseline parameters

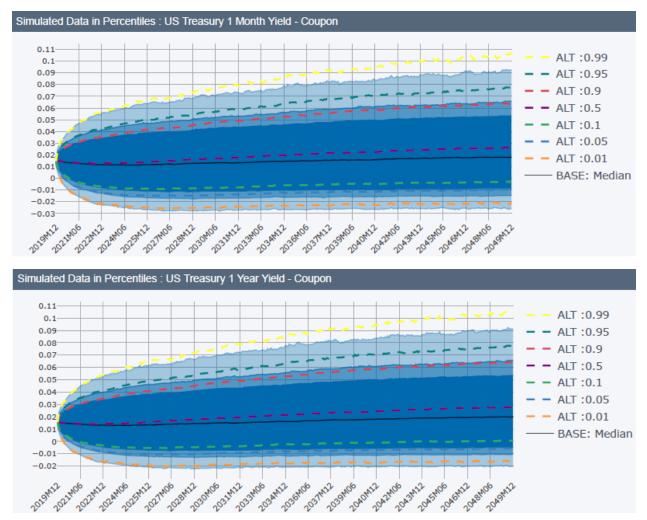
Model Parame	ters									1ean Reversi	on Spee	Long	Term Lev	/els
CIR Process	Theta	Карра	Sigma	Lambda0	Lambda1	Gamma	Gamma + Kappa	LT State	Target	CalculatecTa	arget	A	ctual	Target
CIR 1	0.2716	5.6773	3 0.0181	-0.258	6 5.3995	5.677311	11.35456	4.67%	4.67%	3.60	3.60	Overnight	2.25%	2.25%
CIR 2	0.0196	0.2520	0.0423	-0.000	7 -0.0188	0.259034	0.511067	6.96%	6.96%	3.69	3.69	1-Year	2.50%	2.50%
CIR 3	0.0010	0.000	0.0390	0.001	0 -0.0595	0.055149	0.055164	3.33%	3.33%	16.80	<u> 16.80</u>	20-Year	3.50%	3.50%
Time	Shift Funct 0 -0.1271	tion										C	viff	0.0%

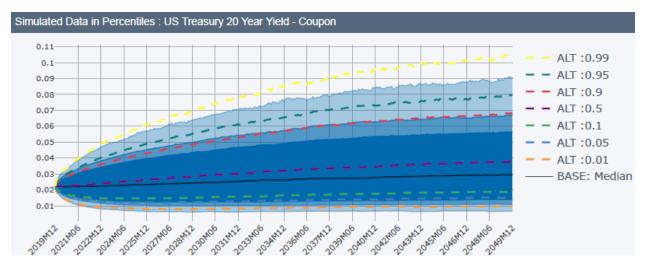
Alternative parameters

Increasing long-term target levels by 100bps...

Model Parame	ters									fean Revei	sion Spee	Long	Term Lev	/els
CIR Process	Vega	Карра	Sigma	Lambda0	Lambda1	Gamma	Gamma + Kappa	LT State	Target	Calculated	Target	A	ctual	Target
CIR 1	0.2716	5.6773	0.0181	-0.2585	5.3995	5.677311	11.35456	4.71%	4.71%	3.60	<u>3.60</u>	Overnight	3.25%	3.:
CIR 2	0.0196	0.2520	0.0423	-0.0012	-0.0188	0.259034	0.511067	6.79%	6.79%	3.69	3.69	1-Year	3.50%	3.5
CIR 3	0.0010	0.0000	0.0390	0.0017	-0.0595	0.055149	0.055164	4.46%	4.46%	16.80	<u> 16.80</u>	20-Year	4.50%	4.5
														$\overline{\ }$
Time	Shift Fun	ction										C	iff	0
	0 -0 1271													

0 -0.1271


Model Paramet	ers										lean Reversi	on Spee		Long	Term Lev	els
CIR Process	Vega	Карра	Sigma	Lambda0	Lambda1	Gamma	Gamma + Kappa	LT State	Target		CalculatecTa	rget		A	ctual	Target
CIR 1	0.2716	5.677	3 0.0181	-0.258	5.3995	5.677311	11.35456	4.71%	4.71%	١	3.60	3.60	Ov	ernight	3.25%	3.25%
CIR 2	0.0196	0.2520	0.0423	-0.001	.2 -0.0188	0.259034	0.511067	6.79%	6.79%		3.69	3.69	1-\	'ear	3.50%	3.50%
CIR 3	0.0010	0.000	0.0390	0.001	.7 -0.0595	0.055149	0.055164	4.46%	4.46%		16.80	16.80	20	Year	4.50%	4.50%
Time	Shift Fund 0 -0.1271								\bigcirc					D	iff	0.0%


Leads to a change in Target States...

Which then leads to new Lambda0 parameters.

Model Paramet	ters							lean Revers	ion Spee	Long	Term Lev	els
CIR Process	Vega Kappa Si	gma LambdaO	Lambda1	Gamma	Gamma + Kappa	LT State	Target	Calculatec	arget	A	ctual	Target
CIR 1	0.2716 5.6773	0.0181 / -0.25	35 5.3995	5.677311	11.35456	4.71%	4.71%	3.60	3.60	Overnight	3.25%	3.25%
CIR 2	0.0196 0.2520	0.0423 -0.00	-0.0188	0.259034	0.511067	6.79%	6.79%	3.69	3.69	1-Year	3.50%	3.50%
CIR 3	0.0010 0.0000	0.0390 0.00	.7/ -0.0595	0.055149	0.055164	4.46%	4.46%	16.80	<u> 16.80</u>	20-Year	4.50%	4.50%
		\smile										
Time	Shift Function									Di	ff	0.0%
	0 -0.1271											

Note: These last two adjustments are formulaic in the current spreadsheet. Although, the new Target State variables must be solved for.

The distributions for all points along the curve increase by about 100 bps across the 30-year simulation. The results are slightly wider since volatility increases with level.

Lower MRP

What is this example testing?

Regulators wanted to see the impact of decreasing the MRP

Impact on Parameters

Baseline parameters

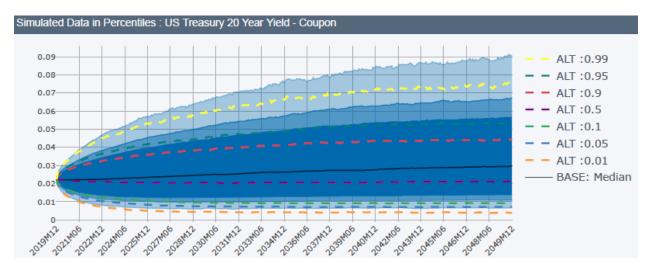
Model Parame	ters									1ean Reversi	on Spee	Long	Term Lev	vels
CIR Process	Theta I	Карра	Sigma	Lambda0	Lambda1	Gamma	Gamma + Kappa	LT State	Target	CalculatecTa	rget	A	ctual	Target
CIR 1	0.2716	5.6773	3 0.0181	-0.258	6 5.3995	5.677311	11.35456	4.67%	4.67%	3.60	3.60	Overnight	2.25%	2.25%
CIR 2	0.0196	0.2520	0.0423	-0.000	7 -0.0188	0.259034	0.511067	6.96%	6.96%	3.69	3.69	1-Year	2.50%	2.50%
CIR 3	0.0010	0.0000	0.0390	0.001	0 -0.0595	0.055149	0.055164	3.33%	3.33%	16.80	<u> 16.80</u>	20-Year	3.50%	3.50%
Time	Shift Funct 0 -0.1271	ion										C	viff	0.0%

Alternative parameters

Reducing long-term target levels by 100bps...

Model Paramete	ers									Aean Reversi	ion Spee	Lon	g Term Lo	evels
CIR Process	Vega	Карра	Sigma	Lambda0	Lambda1	Gamma	Gamma + Kappa	LT State	Target	CalculatecTa	arget	ļ	Actual	Target
CIR 1	0.2716	5.6773	0.0181	-0.2587	5.3995	5.677311	11.35456	4.63%	4.63%	3.60	3.60	Overnight	1.25%	1.25%
CIR 2	0.0196	0.2520	0.0423	-0.0002	-0.0188	0.259034	0.511067	7.14%	7.14%	3.69	3.69	1-Year	1.50%	1.50%
CIR 3	0.0010	0.0000	0.0390	0.0003	-0.0595	0.055149	0.055164	2.19%	2.19%	16.80	16.80	20-Year	2.50%	2.50%
														\smile
Time	Shift Fund	tion										[Diff	0.0%


0 -0.1271


Model Paramet	ters										lean Reversio		Long	; Term Le	vels
CIR Process	Vega	Карра	Sigma	Lambda0	Lambda1	Gamma	Gamma + Kappa	a LT State	Target	`	Calculatec Ta	rget	A	ctual	Target
CIR 1	0.2716	5.677	3 0.0181	-0.258	7 5.3995	5.677311	11.35456	4.63%	4.63%		3.60	<u>3.60</u>	Overnight	1.25%	1.25%
CIR 2	0.0196	0.252	0 0.0423	-0.000	2 -0.0188	0.259034	0.511067	7.14%	7.14%		3.69	3.69	1-Year	1.50%	1.50%
CIR 3	0.0010	0.000	0 0.0390	0.000	3 -0.0595	0.055149	0.055164	2.19%	2.19%	/	16.80	16.80	20-Year	2.50%	2.50%
									\bigcirc						
Time	Shift Fund	tion											D	iff	0.0%
	0 -0.1271														

Leads to a change in Target States...

Which then leads to new Lambda0 parameters.

Model Paramet	ers			~						lean Reversio	on Spee	Long	g Term Le	vels
CIR Process	Vega	Карра	Sigma	Lambda0	Lambda1	Gamma	Gamma + Kappa	LT State	Target	Calculatec Ta	rget	A	ctual	Target
CIR 1	0.2716	5.6773	0.0181	. / -0.258	5.3995	5.677311	11.35456	4.63%	4.63%	3.60	<u>3.60</u>	Overnight	1.25%	1.25%
CIR 2	0.0196	0.2520	0.0423	-0.000	-0.0188	0.259034	0.511067	7.14%	7.14%	3.69	3.69	1-Year	1.50%	1.50%
CIR 3	0.0010	0.0000	0.0390	0.000	-0.0595	0.055149	0.055164	2.19%	2.19%	16.80	16.80	20-Year	2.50%	2.50%
_ .				\bigcirc										0.0%
Time	Shift Func	tion										D	iff	0.0%
	0 -0.1271													

The distributions for all points along the curve decrease by about 100 bps across the 30-year simulation. The results are slightly narrower since volatility increases with level.

What is this example testing?

When setting the mean reversion speed, we looked at both the standard GEMS values and the ones used by the current Academy Interest Rate Generator. While the speeds were fairly close on the shortend of the curve (i.e. 3.1 for GEMS vs 3.6 for the Academy), there was a huge difference on the longend: 4.1 for GEMS vs 16.8 for the Academy. In the original proposal, we used the Academy mean reversion speeds. So, in this example, we test the impact of halving the long-term mean reversion speed.

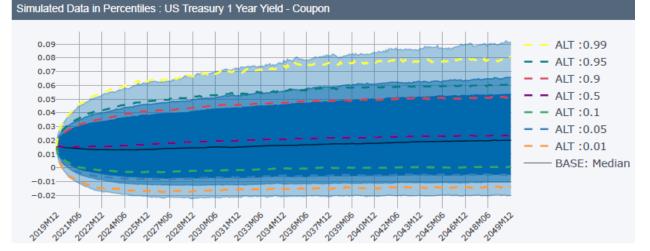
Impact on Parameters

Baseline parameters Model Parameters **Mean Reversion Spee** Long Term Levels CIR Process Theta Kappa Sigma Lambda0 Lambda1 Gamma Gamma + Kappa LT State Target Calculatec Target Actual Target CIR 1 0.2716 5.6773 0.0181 -0.2586 5.3995 5.677311 11.35456 4.67% 3.60 3.60 Overnight 2.25% 2.25% -0.0007 2.50% CIR 2 0.0196 0.2520 0.0423 -0.0188 0.259034 0.511067 6.96% 3 69 1-Year 2.50% 6.96% 0.0010 16.80 16.80 CIR 3 0.0010 0.0000 0.0390 -0.0595 0.055149 0.055164 3.33% 3.33% 20-Year 3.50% 3.50% Time Shift Function Diff 0.0% 0 -0.1271

Alternative parameters

When reducing the Mean Reversion Speed target for the long-end of the curve...


Model Paramet	ers									1ean Re	version Spe	e	Long	Term Lev	els
CIR Process	Vega	Карра	Sigma	Lambda0	Lambda1	Gamma	Gamma + Kappa	LT State	Target	Calcula	ecTarget		A	ctual	Target
CIR 1	0.271	5.677	3 0.0181	-0.258	6 5.3995	5.677311	l 11.35456	4.67%	4.67%	3.	50 3.6	0	Overnight	2.25%	2.25%
CIR 2	0.019	6 0.252	0 0.0423	-0.000	7 -0.0188	0.259034	0.511067	6.96%	6.96%	3.	59 <u>3.6</u>	9	1-Year	2.50%	2.50%
CIR 3	0.001	0.000	0.0390	0.003	0 -0.1190	0.055149	0.055164	3.33%	3.33%	8.	40 (8.4	0)	20-Year	3.50%	3.50%
Time	Shift Fun	ction											D	liff	0.0%
	0 -0.127	1													


That leads to a revised value for that state's Lambda1...

Model Paramet	ers									1ean Reversi	on Spee	Long	g Term Lev	vels
CIR Process	Theta	Карра	Sigma	Lambda0	Lambda1	Gamma	Gamma + Kappa	LT State	Target	CalculatecTa	rget	1	Actual	Target
CIR 1	0.2716	5.677	3 0.0181	-0.258	5.3995	5.677311	1 11.35456	4.67%	4.67%	3.60	3.60	Overnight	2.25%	2.25%
CIR 2	0.0196	0.2520	0.0423	-0.000	-0.0188	0.259034	4 0.511067	6.96%	6.96%	3.69	3.69	1-Year	2.50%	2.50%
CIR 3	0.0010	0.000	0.0390	0.001	.0 -0.0595	0.055149	0.055164	3.33%	3.33%	16.80	<u> 16.80</u>	20-Year	3.50%	3.50%
Time	Shift Fund 0 -0.1271											I	Diff	0.0%

That, means that state's Lambda0 parameters must also be changed to keep the same Long-Term Target.

Model Parame	ters									lean Reversi	on Spee	Long	Term Lev	vels
CIR Process	Vega	Карра	Sigma	Lambda0	Lambda1	Gamma	Gamma + Kap	pa LT State	Target	Calculatec Ta	rget	A	ctual	Target
CIR 1	0.2716	5 5.6773	3 0.0181	-0.258	5.3995	5.677311	11.35456	4.67%	6 <mark>4.67%</mark>	3.60	<u>3.60</u>	Overnight	2.25%	2.25%
CIR 2	0.0196	5 0.2520	0.0423	-0.000	7 -0.0188	0.259034	0.511067	6.96%	6.96%	3.69	3.69	1-Year	2.50%	2.50%
CIR 3	0.0010	0.000	0.0390	(0.003) -0.1190	0.055149	0.055164	3.33%	6 3.33%	8.40	8.40	20-Year	3.50%	3.50%
				\bigcirc										
Time	Shift Fun	ction										D	iff	0.0%
	0 -0.1271	L												

Since the Target Yields are above the initial conditions, using a faster reversion speed shifts the entire distribution up slightly across all tenors. In addition, the faster reversion speed also means that the projected Yields aren't as volatile. The gap in volatility is most pronounced at the long-end of the Yield curve.

Higher Volatility

What is this example testing?

There has been some concern expressed with the lack of double-digit interest rates like we saw in the 1980's. So, in this test, we doubled the volatility parameters to produce more of those scenarios.

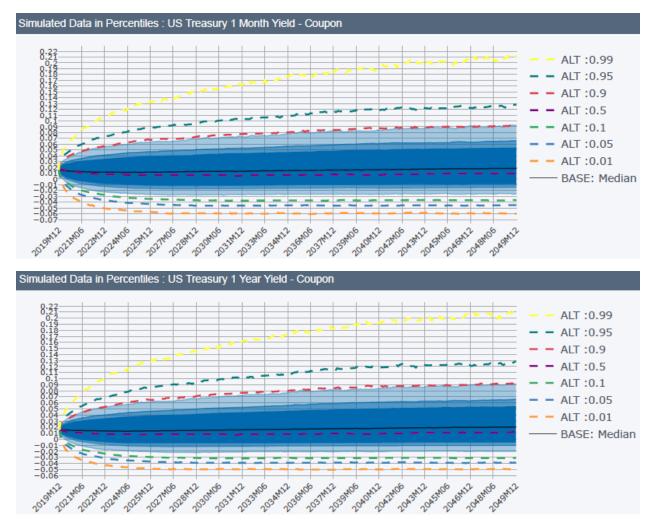
Impact on Parameters

Baseline p	arameters
------------	-----------

Model Paramet	ters									fean Reversion Spee	Long	TermLev	els
CIR Process	Theta	Карра	Sigma	Lambda0	Lambda1	Gamma	Gamma + Kappa	LT State	Target	Calculate: Target	A	ctual	Target
CIR1	0.2716	5.677	3 0.0181	-0.2586	5.3995	5.677311	l 11.35456	4.67%	4.67%	3.60 3.60	Overnight	2.25%	2.25
CIR2	0.0196	0.252	0 0.0423	-0.0007	7 -0.0188	0.259034	0.511067	6.96%	6.96%	3.69 3.69	1-Year	2.50%	2.50
CIR3	0.0010	0.000	0.0390	0.0010) -0.0595	0.055149	0.055164	3.33%	3.33%	16.80 16.80	20-Year	3.50%	3.50
Time	Shift Fun 0 -0.1271										D	iff	0.05

Alternative parameters

Doubled the Sigma parameters to double the expected volatility...


Model Paramet	ers										Vean Reversion Speed	Long	g Term Lev	els
CIR Process	Vega	Карра	Sigma		Lambda0	Lambda1	Gamma	Gamma + Kappa	LT State	Target	Calculated Target	1	Actual	Target
CIR 1	0.2716	5.6773	3 (0.	.0363	-0.2579	5.3995	5.677485	11.35474	4.92%	4.92%	3.60 3.60	Overnight	2.25%	2.25%
CIR 2	0.0196	0.2520) (0,	.0846	-0.005	7 -0.0188	0.278985	0.531018	5.12%	5.12%	3.69 3.69	1-Year	2.50%	2.50%
CIR 3	0.0010	0.000) (0.	.0780	0.0020) -0.0595	0.110299	0.110313	4.91%	4.91%	16.80 16.80	20-Year	3.50%	<mark>3.50%</mark>
Time	Shift Func 0 -0.1271											[Diff	0.0%


Changing the Sigma parameters alters the Auxiliary functions. That requires us to find a new set of the Target State levels to meet the long-term MRPs...

Model Paramet	ers										lean Reversio	on Spee	Long	Term Lev	vels
CIR Process	Vega	Карра	Sigma	Lambda0	Lambda1	Gamma	Gamma + Kappa	LT State	Target		CalculatecTa	rget	ļ	ctual	Target
CIR 1	0.2716	5.677	3 0.0363	-0.257	9 5.3995	5.677485	5 11.35474	4.92%	4.92%	\	3.60	<u>3.60</u>	Overnight	2.25%	2.25%
CIR 2	0.0196	0.252	0 0.0846	-0.005	7 -0.0188	0.278985	5 0.531018	5.12%	5.12%		3.69	3.69	1-Year	2.50%	2.50%
CIR 3	0.0010	0.000	0 0.0780	0.002	0 -0.0595	0.110299	0.110313	4.91%	4.91%	/	16.80	<u>16.80</u>	20-Year	3.50%	3.50%
									\smile						
Time	Shift Fund	ction											[Diff	0.0%
	0 -0.1271														

Which then leads to new set of Lambda0 parameters.

Model Parame	ters							fean Reversion	n Spee	Long	Term Leve	els
CIR Process	Vega Kappa Sig	gma Lambda0	Lambda1 G	Gamma	Gamma + Kappa	LT State	Target	CalculatecTar	get	A	ctual 1	Target
CIR 1	0.2716 5.6773	0.0363 / -0.257	9 <u>5.3995</u> !	5.677485	11.35474	4.92%	4.92%	3.60	<u>3.60</u>	Overnight	2.25%	2.25%
CIR 2	0.0196 0.2520	0.0846 -0.005	7 -0.0188 (0.278985	0.531018	5.12%	5.12%	3.69	3.69	1-Year	2.50%	2.50%
CIR 3	0.0010 0.0000	0.0780 0.002	0 <mark>/ -0.0595</mark> (0.110299	0.110313	4.91%	4.91%	16.80	16.80	20-Year	3.50%	3.50%
Time	Shift Function 0 -0.1271									Di	ff	0.0%

As expected, these higher Sigma parameters lead to roughly double across all tenors. (Note: The increase is not exactly double because of the change in target state levels.) Since there are absolute minimums for all of these tenors, most of the additional volatility is on the upper side. For example, the 1st percentile of the 20-Year Yield at the end of the 30th projection year drops about 100 bps: from 66 bps to -50 bps. However, on the other end, the 99th percentile overs doubles: from a little over 9% to over 19% at that same future date. To keep the mean the same despite this increase is positive skew, there is a slight down tick in the median projections for all the tenors.

Alternative Shift

What is this example testing?

Regulators expressed some concern about the frequency and the severity of negative Yields. The easiest way to make those adjustments is to move the linear shift up.

Impact on Parameters

Baseline parameters

Model Parame	ters									lean Reversion Spee	Long Terr	n Levels
CIR Process	Theta	Карра	Sigma	Lambda0	Lambda1	Gamma	Gamma + Kappa	a LT State	Target	Calculatec Target	Actua	l Target
CIR 1	0.2716	5.677	3 0.0181	-0.258	6 5.3995	5.677311	11.35456	4.67%	4.67%	3.60 3.60	Overnight 2.	25% <mark>2.25%</mark>
CIR 2	0.0196	0.2520	0 0.0423	-0.000	7 -0.0188	0.259034	0.511067	6.96%	6.96%	3.69 3.69	1-Year 2.	50% <mark>2.50%</mark>
CIR 3	0.0010	0.000	0.0390	0.001	0 -0.0595	0.055149	0.055164	3.33%	3.33%	16.80 16.80	20-Year 3.	50% <mark>3.50%</mark>
Time	Shift Fund 0 -0.1271										Diff	0.0%

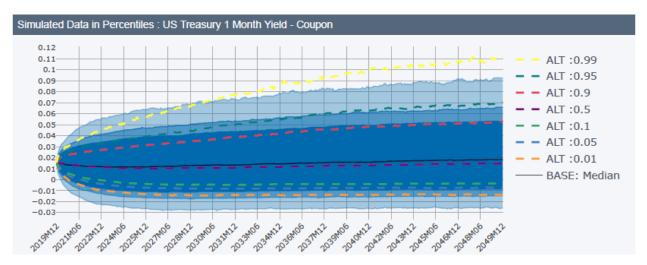
Alternative parameters

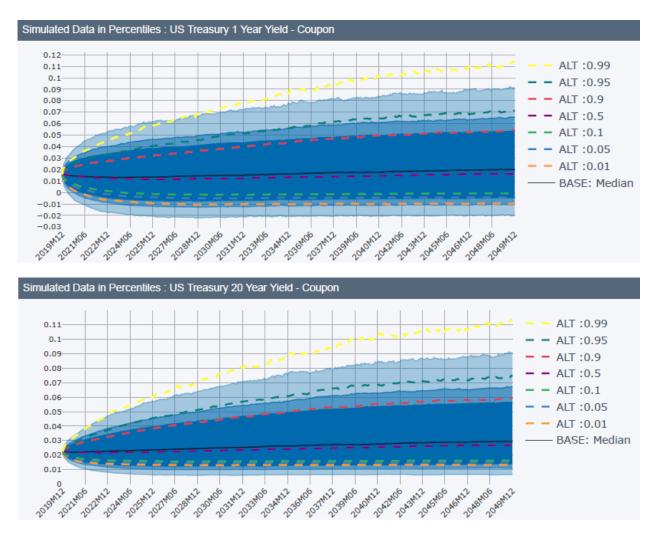
An increase of the Shift parameter by 100 basis points...

Model Paramete	ers									Viean Reversion Speed	Long	Term Leve	els
CIR Process	Theta	Карра	Sigma	Lambda0	Lambda1	Gamma	Gamma + Kappa	LT State	Target	Calculated Target	A	ctual T	arget
CIR 1	0.2716	5.6773	0.0089	-0.258	5 5.3995	5.677267	11.35452	4.70%	4.70%	3.60 3.60	Overnight	2.25%	2.25%
CIR 2	0.0196	0.2520	0.0230	-0.001	2 -0.0188	0.254124	0.506157	6.77%	6.77%	3.69 3.69	1-Year	2.50%	2.50%
CIR 3	0.0010	0.000	0.0585	0.000	5 -0.0595	0.082731	0.082746	2.49%	2.49%	16.80 16.80	20-Year	3.50%	3.50%
Time	Shift Funct)	-								D	liff	0.0%

Changing the Shift parameters requires us to find a new set of the Target State levels to meet the long-term MRPs. For example, the Target Overnight Yield = Shift + Sum of Target State variables. So, if the Shift increases by 100 bps, then the States must decrease by that same amount...

Model Paramet	ers									Vean Reversi	on Speec	Long	; Term Leve	els
CIR Process	Theta	Карра	Sigma	Lambda0	Lambda1	Gamma	Gamma + Kappa	LT State Target		Calculated Ta	irget	A	ctual 1	arget
CIR 1	0.2716	5.6773	3 0.0089	-0.258	5 5.3995	5.677267	11.35452	4.70% 4.70%	%	3.60	<mark>3.60</mark>	Overnight	2.25%	2.25%
CIR 2	0.0196	0.2520	0.0230	-0.001	2 -0.0188	0.254124	0.506157	6.7% 6.77	%	3.69	3.69	1-Year	2.50%	2.50%
CIR 3	0.0010	0.000	0.0585	0.000	-0.0595	0.082731	0.082746	2.49% 2.495	%	16.80	16.80	20-Year	3.50%	3.50%
Time	Shift Func	tion										[Diff	0.0%
	0 -0.1171													
1													•	


Which then leads to new set of Lambda0 parameters...


Model Paramet	ers				_							Vlean Reversio	on Speec		Long	Term Lev	els
CIR Process	Theta	Карра	Sigma	Jambda0	La	mbda1	Gamma	Gamma + Kapp	a LT Sta	te	Farget	Calculated Ta	rget		A	ctual	Target
CIR 1	0.2716	5 5.6773	3 0.008	9 -0.1	2585	5.3995	5.677267	11.35452	4.	70%	4.70%	3.60	3.60	Ove	ernight	2.25%	2.25%
CIR 2	0.0196	0.2520	0.023	d -0.1	0012	-0.0188	0.254124	0.506157	6.	77%	6.77%	3.69	3.69	1-Y	ear	2.50%	2.50%
CIR 3	0.0010	0.000	0.058	5 0.1	0005 🦯	-0.0595	0.082731	0.082746	2.	49%	2.49%	16.80	16.80	20-	Year	3.50%	3.50%
			-	\sim													
Time	Shift Func	tion													C	liff	0.0%
	0 -0.1171	L															
																•	

Since the volatility is linked to the level of the State variables, we need to increase the Sigma values to get back to the target volatility.

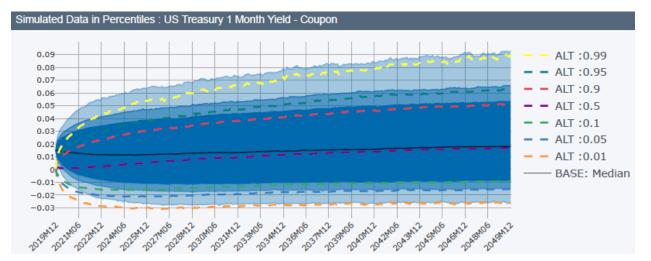
Model F	Parameters												Vean Reversi	on Speec		Long Ter	m Lev	els
CIR Proc	cess The	ta	Карра	Sigma		Lambda0	Lambda1	Gamma	Gamma + Ka	арра	LT State	Target	Calculated Ta	arget		Actua	1 1	Farget
CIR 1		0.2716	5.677	\$	0.0089	-0.25	85 5.3995	5.677267	11.35452		4.70%	4.70%	3.60	3.60	Over	night 2	.25%	2.25%
CIR 2		0.0196	0.252)	0.0230	-0.00	12 -0.0188	0.254124	0.506157		6.77%	6.77%	3.69	3.69	1-Yea	r 2	.50%	2.50%
CIR 3		0.0010	0.000		0.0585	0.00	05 -0.0595	0.082731	0.082746		2.49%	2.49%	16.80	16.80	20-Ye	ar 3	.50%	3.50%
					\sim													
Time	Shif	t Func	tion													Diff		0.0%
	0 -	0.1171																
																	•	

Since the change in Sigma will impact the Auxiliary functions (see the **Higher Volatility** example), this change will also change the Target State variables. So, unlike the other items, this process involves either several iterations or the use of Conning's optimization methodology.

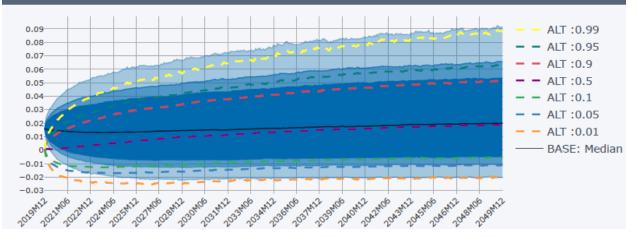
In the early projection years, there is a fairly large drop in the volatility especially for the shorter tenors. (Note: This is a function of the lower Sigma values for the first two state variables.) In the later projection years, the volatility ends up at about the same level as the Baseline parameters for all the tenors. However, the reduction of the downside possibilities, due to the higher shift value, means that there has to be more upside to the distributions.

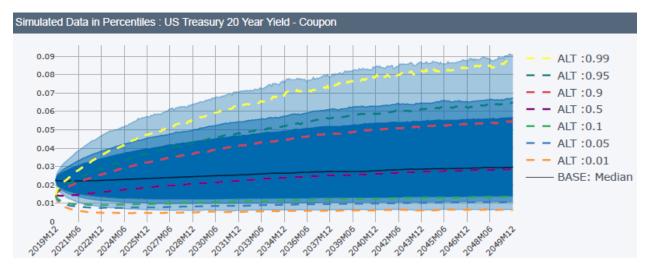
Alternative Start Date

What is this example testing?


Several regulators expressed interest in understanding how the initial conditions will impact the projections. So, in this example, we move the initial conditions from 12/31/2019 to 12/31/2020.

(Note: Solely for the purpose of this example, we did NOT make any adjustments to the MRPs even though the current procedure would have had an update in January 2020.)


Impact on Parameters


Since there are no change in the long-term targets, there are no changes in the model parameters.

Impact on Results

Simulated Data in Percentiles : US Treasury 1 Year Yield - Coupon

Since the initial Yields are about 100 bps lower, the entire distribution is lower across all tenors. Because of the difference in reversion speeds, the short tenors are pretty close to the baseline projections by about the end of the 10th projection year. On the other hand, the distribution for the longer tenors takes most of the 30 year projection periods to revert to the baseline projections.

Alternative Shift + Volatility

What is this example testing?

This alternative combines the increase in the Shift function, to lower frequency of negative Yields, and increases the volatility, to increase the likelihood of 1980's Yields.

Impact on Parameters

Baseline parameters

Model Paramet	ers									Nean Reversion Spee	Long	Term Lev	els
CIR Process	Theta	Карра	Sigma	Lambda0	Lambda1	Gamma	Gamma + Kappa	LT State	Target	CalculatecTarget	A	ctual [.]	Target
CIR 1	0.2716	5.677	3 0.0181	-0.258	6 5.3995	5.677311	l 11.35456	4.67%	4.67%	3.60 3.60	Overnight	2.25%	2.25%
CIR 2	0.0196	0.252	0.0423	-0.000	7 -0.0188	0.259034	0.511067	6.96%	6.96%	3.69 3.69	1-Year	2.50%	2.50%
CIR 3	0.0010	0.000	0.0390	0.001	0 -0.0595	0.055149	0.055164	3.33%	3.33%	16.80 16.80	20-Year	3.50%	3.50%
Time	Shift Fun 0 -0.1271										D	iff	0.0%

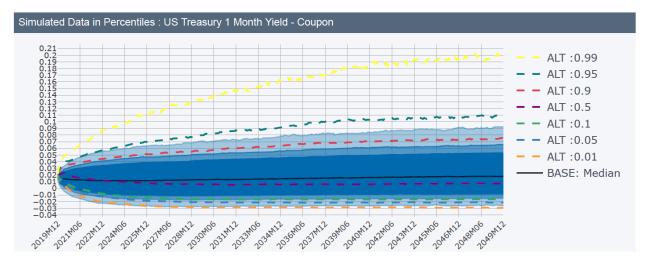
Alternative parameters

An increase of the Shift parameter by 100 basis points...

Model Paramet	ters										Vlean Reversio	on Speec		Long	; Term Lev	/els
CIR Process	Theta	Карра	Sigma	Lambda0	Lambda1	Gamma	Gamma + Kap	pa	LT State	Target	Calculated Ta	rget		A	Actual	Target
CIR 1	0.2716	5.6773	0.013	4 -0.258	2 5.3995	5.677285	11.35454		4.83%	4.83%	3.60	3.60	Over	night	2.25%	2.25%
CIR 2	0.0196	0.2520	0.034	5 -0.003	9 -0.0188	0.256713	0.508746		5.78%	5.78%	3.69	3.69	1-Ye	ar	2.50%	2.50%
CIR 3	0.0010	0.0000	0.087	8 0.001	0 -0.0595	0.124097	0.124112		3.35%	3.35%	16.80	16.80	20-Y	ear	3.50%	3.50%
Time	Shift Funct)				-								[Diff	0.0%

Changing these parameters requires us to find a new set of the Target State levels to meet the long-term MRPs. For example, the Target Overnight Yield = Shift + Sum of Target State variables. So, if the Shift increases by 100 bps, then the States must decrease by that same amount...

Model Paramet	ers								\sim	Vlean F	Reversi	on Speec		Long	g Term Lev	/els
CIR Process	Theta	Карра	Sigma	Lambda0	Lambda1	Gamma	Gamma + Kappa	LT State	Target	Calcul	ated Ta	arget		1	Actual	Target
CIR 1	0.2716	5.6773	0.0134	-0.2582	5.3995	5.677285	11.35454	4.88%	4.83%		3.60	3.60	O	/ernight	2.25%	2.25%
CIR 2	0.0196	0.2520	0.0345	-0.0039	-0.0188	0.256713	0.508746	5.78%	5.78%		3.69	3.69	1-	Year	2.50%	2.50%
CIR 3	0.0010	0.0000	0.0878	0.0010	-0.0595	0.124097	0.124112	3.35%	3.35%	1	5.80	16.80	20	-Year	3.50%	3.50%
									\smile							
Time	Shift Func	tion												[Diff	0.0%
	0 -0.1171															


Which then leads to new set of Lambda0 parameters...

ppa Sigma 5.6773	0.0134		ambda1	Gamma	Gamma + Kappa	LT State	Target	Calculated Ta				
5.6773	0.0134				outilitie : happe	LI State	Taiget	Calculated Ta	rget	A	ctual T	Farget
	0.013	-0.2582	5.3995	5.677285	11.35454	4.83%	4.83%	3.60	3.60	Overnight	2.25%	2.25%
0.2520	0.0345	-0.0039	-0.0188	0.256713	0.508746	5.78%	5.78%	3.69	3.69	1-Year	2.50%	2.50%
0.0000	0.0878	0.0010	-0.0595	0.124097	0.124112	3.35%	3.35%	16.80	16.80	20-Year	3.50%	3.50%
		\smile								D	iff	0.0%
		0.0000 0.0878	0.0000 0.0878 0.0010	0.0000 0.0878 0.0010 -0.0595	0.0000 0.0878 0.0010 -0.0595 0.124097	0.0000 0.0878 0.0010 -0.0595 0.124097 0.124112	0.0000 0.0878 0.0010 -0.0595 0.124097 0.124112 3.35%	0.0000 0.0878 0.0010 -0.0595 0.124097 0.124112 3.35% 3.35%	0.0000 0.0878 0.0010 -0.0595 0.124097 0.124112 3.35% 3.35% 16.80	0.0000 0.0878 0.0010 -0.0595 0.124097 0.124112 3.35% 3.35% 16.80 16.80	0.0000 0.0878 0.0010 -0.0595 0.124097 0.124112 3.35% 3.35% 16.80 16.80 20-Year	0.0000 0.0878 0.0010 -0.0595 0.124097 0.124112 3.35% 3.35% 16.80 16.80 20-Year 3.50%

Since the volatility is linked to the level of the State variables, we need to increase the Sigma values to get back to the target volatility.

Model Parameters										Mean Reversi	on Speec	Loi	Long Term Levels			
CIR Process	Theta	Карра	Sigma	Lam	bda0	Lambda1	Gamma	Gamma + K	арра	LT State	Target	Calculated Ta	arget		Actual	Target
CIR 1	0.2716	5 5.677	0.0	134	-0.2582	5.3995	5.677285	11.35454		4.83%	4.83%	3.60	3.60	Overnight	2.25%	2.25%
CIR 2	0.0196	5 0.2510	0.0	345	-0.0039	-0.0188	0.256713	0.508746		5.78%	5.78%	3.69	3.69	1-Year	2.50%	2.50%
CIR 3	0.0010	0.000	0.0	378	0.0010	-0.0595	0.124097	0.124112		3.35%	3.35%	16.80	16.80	20-Year	3.50%	3.50%
			$\overline{}$				-									
Time	Shift Func	tion													Diff	0.0%
	0 -0.1171	L														

Since the change in Sigma will impact the Auxiliary functions (see the **Higher Volatility** example), this change will also change the Target State variables. So, unlike the other items, this process involves either several iterations or the use of Conning's optimization methodology.

As targeted, the volatility roughly doubles with this calibration relative to the baseline. However, since there is a lower bound, which has been shifted even higher, that extra volatility leads to markedly higher levels at the upper percentiles. In particular, this calibration has a material chance of returning to the double-digit levels of the 1980s.